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1. Introduction: 

APPROACH TO ESTIMATION IN PERIODIC SALLE SURVEYS 

Margaret Gurney and 
U.S. Bureau of 

The increasing use of periodic 
probability -based sample surveys to study 
the way in which selected characteristics of 
a population vary with time has raised many 
interesting problems of sample design and 
estimation. The degree of interest which 
this topic has generated may be gauged by 
the (admittedly incomplete) bibliography at 

the end of this paper, listing articles 

that have come to our attention. 

Although the fundamental ideas in this 
area are already implicit in the basic 
papers of Jessen and Patterson (18], 

they are often obscured in the literature by 
the myriad of sampling details surrounding 
the problems to which they are applied. In 
this paper, which is essentially expository, 
we shall examine a specific periodic sample 
survey in an effort to show how the problem 
of constructing "good" estimators can be 
fruitfully regarded as a problem in standard 
multivariate analysis and treated by means 
of techniques currently in use for handling 
general stochastic processes. 

2. The Problem: 

.A sample survey which continues over a 
period of time is capable of producing, for 
each time period, many estimates of each of 
the characteristics of the population being 
studied. Each individual observation can be 
used to make an estimate, or the individual 
observations can be combined in some desired 
manner to make one or more estimates for a 
particular time period. 

An estimate which does not make use of 
the survey data for any time period except 
that period to which the estimate refers 
may be called an "elementary estimate." It 

should be possible to improve such an esti- 

mate by making use of correlated elementary 
estimates available from other time periods. 
The purpose of this paper is to discuss 

minimum variance unbiased linear combina- 
tions of elementary estimates, and to out- 
line a method of computation which will 
determine the weights to be used on the 
various elementary estimates to obtain the 
best linear unbiased estimate, whether for 
an estimate of level, of change over time, 
of an average over time, or in general, for 
any linear combination of the elementary 
estimates. 

3. A Special Case: 

The Current Population Survey of the 
Bureaú of the Census is a monthly household 
survey, which has been in operation for many 
years. Data are collected on labor force 
items, demographic characteristics, and on 
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other characteristics'of the population for 
which a household survey is an appropriate 
vehicle. At each month estimates are made, 
for many characteristics, of the current 
level, of changes since earlier months, and 
of averages over several months. 

The survey is based on a rotating sample 
in which one - fourth of the households are 
replaced by a new selection of households 
each month. In each month, one - fourth of 
the households are new, one - fourth have been 
interviewed in the preceding month, one- 
fourth have been interviewed for three con- 
secutive months, and one -fourth have been 
interviewed for four months. Each fourth 
of the sample is treated separately and an 
elementary estimate for the month is made 
from it. 

The following additional information is 
available for the survey, and can be used to 
improve the estimates which are made from 
the sample for a particular characteristic: 
(a) the elementary estimates for past months, 
for each panel, (b) estimates of the average 
correlations over time for observations one 
month, two months, and three months apart, 
and (c) an estimate of the average variance 
for a single panel, averaged over time. 

Consider an estimate for a particular 
month, say January. If the panels are 
labelled "A ", ", "C etc., with "A" 
corresponding to the panel which has just 
entered the survey in January, the rotation 
pattern may be described by the following 
diagram. The numbering of the elementary 
estimates X in the following chart is 
chosen to ¡facilitate the computations. 
This numbering makes the covariance matrix 
of the X's a straightforward direct product 
of simple covariance matrices. It is 

obvious how to terminate the numbering, for 
a finite number of months. 

Month 
Panel 

A B C D E G H I etc. 

Jan. X X X X 
2 4 7 

Dec. X X X X 
3 5 8 11 

Nov. X X X 
6 12 15 

Oct. X X X X 
10 13 16 19 

Sept. X X X X 
14 17 20 23 

Aug. X X X X 

etc. 

18 21 

etc. 

24 27 



As a first approximation we shall assume 
the following characteristics for the survey: 

A. The expected value of the estimates of the 
4 panels for a given month is the same, 
e.g., for January = = EX4 = EX7. 

B. The covariances between estimates from the 
same panel at two different months depend 
only on the number of months between the 
two estimates. For example, 

var(X1) = cov(X1,X1) = cov(X2,X2) = 02 

cov(X2,X3) = cov(X4,X5) = COv(X5,X8) = 

cov(X4,X8) = cov(X7,X5) = cov(X12,X14) 

cov(X7iX1o)= cov(X117X14)= cov(X15,X18)= P302 

The average values of Pi, p2 and p3 are 
estimated from past data from the survey. 
For convenience we shall put 32 = 1. 

C. The panels are selected independently, 
so that (for example) 

cov(X1,X2) = cov(X2,X4) = cov(X2,X8) = 0, etc. 

Under these assumptions an estimate for 
January may be made in several ways. The 
simplest is to use only the observations for 
the month of January for panels, A, B, C, and 
D. Since the panels are independent, the 
best estimate in this case is 
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X = (X X + X + X )/4 
2 4 7 

It can easily be shown that this estimate has 
the minimum variance of any linear combina- 
tion of X , X , X , and X ; its variance is 

1 2 4 7 
.25 times the variance of an individual 
elementary estimate. 

When such a survey has been in operation 
for two months, starting in December, the 
data available for use in making the best 
estimate for January are the four observations 
for panels A, B, C, and D for January, and the 
four observations for panels B, C, D, and E 
for December. It is possible to determine the 
coefficients Ci so that the estimate 
A 
X = C X +CX + C X +CX +CX + 

2 Jan 2 2 4 4 7 7 3 3 

C X +CX + C X 
5 5 8 11 11 

shall have the minimum variance, knowing the 
relations 

cov(X ,X ) = cov(X ,X ) = cov(X ,X ) = p 
2 3 4 5 7 8 1 

EX = EX = EX = EX ; = EX = EX = EX 
i 2 4 7 3 5 8 11 
For an estimate of the civilian labor force, 
with p = .8, the coefficients corresponding 
to thelminimum variance are shown in Table 1. 

Table 1. -- ESTIMATE OF CIVILIAN LABOR FORCE FOR JANUARY FROM CPS SURVEY: COEFFICIENTS OF MINIMUM VARIANCE 

UNBIASED LINEAR ESTIMATES FOR SURVEYS STARTING IN JANUARY, DECEMBER, OCTOBER, AUGUST AND APRIL 

Correlation Pattern: Pi = .8, P2 .7, P3 = .65 

Duration of survey 

1. One month (started in January) 

January 1 .250 .250 .250 

2. Two months (started in preceding December) 

January .219 .260 .260 

December -.052 -.0521 

3. Four months (started in preceding October) 

Panel 

A B C D E F G 

4. 

5. 

January .195 .258 .269 

December -.079 -.036 

November... -.063 

October 

Six months (started in preceding August) 

January .189 .258 .271 

December -.086 -.037 
November -.074 

October 
September 
August 

Ten months (started in preceding April) 

January .187 .259 .271 

December -.089 -.037 
November -.077 

October 
September 
August 
July 
June 

April 

I J K L M 

.2501 
I I 

.260 
-.0521 .1561 

.278 

-.032 .147 
-.025 -.005 .093 
-.061 -.021 .004 .078 

.282 

-.032 .155 
-.026 -.002 .102 

-.075 -.005 .007 .073 
-.045 -.006 .001 .050 

-.027 -.013 .000 .040 

.283 

-.032 .158 
-.026 -.002 .105 

-.080 -.006 .007 .079 

-.053 -.006 .003 .056 

-.037 -.005 .002 .040 

-.026 -.003 .001 .028 

-.018 -.002 .001 .019 

-.012 -.001 .000 .013 
-.007 -.003 .000 .010 
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Table 1 shows also the coefficients for 
an estimate of the civilian labor force for 
January when the survey has been in operation 
four, six, and ten months, respectively. It 

may be seen that the coefficients for the 
earliest months in the sample are smaller 
than the coefficients for the most recent 
months; they approach zero rather rapidly as 
the number of months increases. Moreover, 
the coefficients for the observations from 
the most recent month approach constant 
values as the number of months increases; if 
the survey had been started much earlier, 
the coefficients for January would be approx- 
imately equal to those which are shown for 
ten months. In fact, after six months, the 
coefficients for the most recent months are 
close to the corresponding coefficients for 
ten months. Hence data from the most recent 
six to ten months will provide practically 
all of the improvement which can be achieved 
in the estimate. The speed of convergence 
depends upon the covariances between esti- 
mates for the same panel at different times. 
If the covariances are very high (for example 
p = .95), the time required for convergence 

is longer; on the other hand, if is small, 

say .50, the convergence will be much 
faster, and only three or four months may be 
required to approximate the optimum 
coefficients. 

If the survey has been in operation for 
two or more months, it is possible to make 
a revised estimate for a preceding month 
which will have a smaller variance than the 
one originally obtained for that month. For 
example, an estimate for December, made when 
data for January are available, will usually 
have a smaller variance than the original 
estimate for January. Coefficients for an 
estimate of civilian labor force for 
December, using the data for January, as 
well as all earlier data, are shown in Table 
2, for a survey which has been in operation 
for two, four, six, and ten months, 
respectively. 

In this manner one can make a revised 
estimate for November, using data through 
January, which will have a smaller variance 
than one which used data only through 
November (or December). 

Table 2. -- ESTIMATE OF CIVILIAN LABOR FORCE FOR DECEMBER FROM CPS SURVEY: COEFFICIENTS OF MINIMUM VARIANCE 
UNBIASED LINEAR ESTIMATES FOR SURVEY STARTING IN JANUARY, DECEMBER, OCTOBER, AUGUST AND APitIL 

Correlation Pattern: = .8, P2 = 7, p3 = .65 

Duration of survey 
Panel 

A B I C D I E( F G I H I I I J I K I L M 

1. One month (started in January) 

December 

No estimate for December 

2. Two months (started in preceding 

January .1561 -.052 

December .260 .2601 .2601 .2191 

3. Four months (started in preceding October 

January .128 -.052 -.041 -.035 

December .224 .264 .267 .245 

November -.060 -.033 -.035 .128 

October -.042 -.047 -.006 .095 

4. Six months (started in preceding August) 

January .120 -.051 -.039 -.030 

December .214 .263 .267 .256 

November -.072 -.034 -.032 .138 

October -.060 -.023 -.003 .086 

September -.063 -.005 .005 .063 

August -.035 -.015 .000 .050 

5. Ten months (started in preceding April) 

January .118 -.051 -.038 -.029 

December .211 .263 .267 .259 

November -.077 -.034 -.031 .142 

October -.067 -.024 -.002 .093 

September -.073 -.005 .007 .071 

August -.047 -.006 .003 .050 

July -.032 -.005 .002 .035 

June -.022 -.003 .001 .024 

May -.015 .002 .001 .016 

4pril -.009 -.004 .000 .013 



The variances corresponding to the best 
selection of coefficients for an estimate of 
the civilian labor force, for January and 
for earlier months, are shown in Table 3. 

Table 3. -- VARIANCES OF DELAYED ESTIMATES OF 
CIVILIAN LABOR FORCE: SURVEY ENDING 
IN JANUARY 

Correlation Pattern: p = .8, p = .7, p =..65 
1 2 3 

Estimates 
Duration of survey (months) 

1 2 6 10 

A. Monthly 
Level: 

Jan .250 .219 .195 .189 .187 

Dec .219 .183 173 .170 

Nov .183 .167 .162 

Oct .195. .167 .157 

Sept .173 155 
Aug .189 .155 

July .157 

June .162 

May .170 

April .187 

B. Month -to- 
month change: 

Jan. - Dec .125 .122 .122 .122 

Dec. - Nov.,. .121 .120 .120 

Nov. - Oct .122 .120 .119 

Oct. - Aug .120. .118 

Sept. - Aug. .122 .118 

Aug. - July .118 

July - June .119 

June - May .120 

May - April .122 

The best coefficients for any linear 
combination of the estimates for January, 

December, etc., are obtained by taking the 
same linear combination of the coefficients 
of the best estimates of the corresponding 
months. For example, the coefficients for 
the best estimate of changes from December 
to January, 

- X'Dec' 
are obtained by 

subtracting the coefficients in Table 2 from 
the corresponding coefficients in Table 1. 
The variance of such a difference is given by 

var(X'Jan 
X'Dec) = 

var 
(X'Jan) 

+ var(X'Dec) 
- 

2cov(X'Jan, 
X'Dec),where 

the covariance 

between X' and X'Dec is a number which is 

obtained as part of the general solution of 
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the system. Table 3 presents also variances 
for estimates of month -to -month chance. when 
the survey has been in operation two, four 
six, and ten months. The variance of month - 
to -month change is quite stable, as can be 

seen from the table. 

4. General Procedure: 

To obtain the coefficients of the 
desired minimum variance linear unbiased 
estimate, we find it helpful to use a 
geometric approach suggested by the work of 
Parzen [16],[17] on the application of 
Hilbert space methods to stochastic 
processes. 

In our problem we have a finite set of 
chance variables X,...,Xn whose joint prob- 

ability distribution is assumed to belong to 
a family of distributions subject only to 
the conditions: 

A. No one of the X's is essentially a 
linear function of the remaining X's. 
(If initially we had 

n -1 
Xn = C.X. + const., 

1 =1 

with probability one we assume that we 
have eliminated Xn from the set, and so 
on.) 

B. The covariances Kij = E(Xi 
- 

(X - EX ) are finite and known. 

C. The expected values = are subject 

only to certain linear homogeneous 
restrictions such as 

etc. 
2 3 4 5 6 

or more generally, 

0 (h = 1, p) 
i=1 

Our approach, in brief, is to let the 
variables X, ..., Xn correspond to some 
vectors which form a basis for an 

n- dimensional Hilbert space V. (Halmos 

[ 6 1, 7 )) The vector = , 
lies in this space, and is by virtue of 
condition C free to range over some subspace 

M of V. To find the coefficients Xi of the 

best linear estimator E of an arbitrary 

homogeneous linear combination of the say 

E we form the vector E find its 

projection on the subspace M, and then 
express v* in terms of the k's. The coeffi- 
cients this expression will be the 
required ).'s. 
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To set up the correspondence, we begin 
by regarding the rows of the covariance 
matrix 

... K 

K = 

as vectors = 
(Kil, .., Kin) 

in an ordi- 

nary n- dimensional vector space V. Next we 
show that these vectors k form a basis for 
V, so that any vector a With arbitrary compo- 
nents ..., an can be represented uniquely 

in the form a = This follows from 

the fact that the are linearly independ- 

ent, which in turn follows from our condition 
A. above and from the fact that 

var(E = . 

Since any vector v in V is a linear 
combination of the basis vectors k, we can 
define the inner product of any two vectors 

in V by 

= (E 6iki, = E 

This inner product can be thought of as 
defining angles and lengths in V by inter- 
preting the inner product of a b as the 
product of the "lengths" of a and b by the 
cosine of the "angle" betweeñ them. In 
particular, we shall say that a and b are 
perpendicular if (a,b) = 0, and shall call 

the square of the length of a. It then 
follows that the variance of any linear esti- 
mator E is equal to the length of the 

corresponding vector 

(E = E var(E XiXi) 

We note further that (1) 

= (E 6iki, = E 

which is by definition the j -th component of 
the vector a. Hence if m is the mean -value 
vector with-components it follows 
that 

(m, = E(E (2) 

Thus if a E is any vector in V, 

the expected value of the estimator E is 

given by (m,a) and its variance by (a,a). 

Let us now examine the conditions C' on 
the components µ = of the vector m. 

Suppose, for example, we have the situation 
(see Section 3) 

Panel 

Month 
A B C D E 

J a n u a r y X X X X 
1 2 4 6 

December X X X X 
3 5 7 8 

We would then expect the mean -value vector 
to be of the form 

(a, a, ß, a, a, 

so that we could write m = au + ßu where 
-a -2 

u = (1, 1, 0, 1, 0, 1, 0, 0) 

= (0, 0, 1, 0, 1, 0, 1, 1). 

More generally, the conditions C imply that 
there are some linearly independent vectors 
u , 

u 
such that m satisfies C if and 

- 
only if m is of the form 

= 
E 

i.e. m ranges over the subspace M of V 
spanned by the vectors u , . 

Let us now single out a particular basis 
vector corresponding to the estimator Xh. 

As we have seen, 

= 

for any mean -value vector m = , 

Suppose v is any other vector in V such that 

= 

for every vector m in M. Since each of the 
is then a possible choice of m, we must 

have 

= 1, m) (3) 

where stands for the h -th component of 

We now show that among such vectors v 
satisfying (3) we can find one, say v*, 
which lies in M. This is equivalent to the 
problem of finding numbers 71, which 

satisfy the equations 

= E(u , = uah 



Unless the matrix of elements Lß = 
is singular,.these equations have the 
(unique) solution 

= 
E 

Lap 

Where La stands for the (a,ß) element of 
the inverse of (Laß). But if (Laß) were 

singular, there would be numbers not all 

zero such that E = O. This would 

imply = E (L so 

so that the vector E would have zero 

length. However, in view of our earlier 
discussion of the K matrix, the only vector 
of zero length in V is the zero vector. And 
the linear independence of the vectors u 
makes it impossible to have = 

unless every is zero. 

(4) 

We now have a vector v* which lies in M 
and which satisfies the conditions 

= 
= 

a = 1, m. 

As an immediate consequence of these condi- 
tions, we have 

= 0 a = 1, ..., m. 

Geometrically speaking, we have resolved the 
vector into two components: a component 

v* which lies in M and a component 

which is perpendicular to every vector in M. 
In this sense we call v* the projection of 

on the subspace M. 

The fact that v* is the shortest vector 
satisfying (3) now follows readily. Let v 
be any other vector in V which satisfies 
(3). Then 

- = a = 1, m 

so that v - v* is perpendicular to every 
vector in M, and in particular, (v*, v - v*) 

= O. Consequently 

(v,v) = (v* + v + v - v*) (v*, + 

(v - v*, - v*) 

since the usual cross- product term 
2(v*, - v*) vanishes. Hence 

(v, v) (v*, v*) 

Thus the estimator corresponding to the 
vector v* will have minimum variance among 
all unbiased linear estimators of 

To find the coefficients of this best 
linear estimator, we must express the vector 
v* in terms of the basis vectors 
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From (4) we have 

= 

But = E 0111 where the determined 

from the relations 

= E 9(ß) or = E K. 
Hence 

v* = 

where L can be expressed in terms of the 

and the 
Kij 

by noting that 

L (E E 

= 

From question (5) we then see that the coef- 
ficient of Xi in the best linear unbiased 

estimator of is 

(h) 
= E uah uß jK i 

(5) 

(6) 

The preceding discussion was formally 
restricted to finding the best linear 
unbiased estimator of some particular compo- 
nent of the mean -value vector. But from 

the easily demonstrated fact that the projec- 
tion on M of a linear combination of vectors 

is the same linear combination of their 

projections, it follows that the optimum 
estimator of some linear combination of the 
µ's, such as - is the same linear combi- 

nation of the optimum estimators of the 
individual components 

Equations (6) in the matrix form 

(1) = UT(U K-1 UT) 1, where U = (uai) (7) 

are readily programmed on an electronic 
computer to determine the X's for given µ's 
and K's.1 

Two final comments seem in order at this 
point. In the first place from v* = 

uß we readily obtain the variance of the 

optimum estimator of 

(!*,v*) = E 
ßh (8) 

which simplifies considerably in the problem 
studied in this paper because in general for 
a given h one of the is one, and the rest 

are zero. And secondly the matrix 

(U K-1 UT) UK -1 

1 The computation is illustrated in Appendix A. 
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has the properties of a "generalized 

inverse" of UT, a notion that is being 
increasingly exploited in recent research on 
least squares estimation (Greville [ 5 

Goldman and Zelen [ 4 ]). 

5. Approximation to the Optimum Estimate: 

The purpose of this section is to 
examine some alternative estimators which 
approximate the optimum estimate, and to 
compare them with the optimum. A desirable 
feature of these estimators is that they are 
somewhat easier to compute. Moreover, they 
provide estimates which have most of the 
gains of the optimum estimators. 

Several forms of "composite estimators" 
will be considered. A composite estimate is 

a weighted average to two (or more) linear 
unbiased estimates of the same character- 
istic for a given time period; the weights 
are selected so as to reduce the variance, 
as compared with the variances of the orig- 
inal estimates. These composite estimators 
are defined recursively, and use only a 
limited number of elementary estimates, 
combined. with composite estimates which have 
already been computed. The description 
below of several composite estimators will 
illustrate the definition. 

A. Simple Composite Estimator: 

To form a "simple composite esti- 
mator" for a given month, say January, 

(1) make a simple average of the elemen- 
tary estimates for January from 
panels A, B, C, and D: 

X,Jan = (X + X + X + X )/4 
1 2 4 7 

(2) make a difference estimate for 
January by adding to the (already 
computed) composite estimate for 
December the estimate of the 
December- January change, based on 
identical panels. Let the composite 
estimator be designated by X *, and 
the change by 

= (X2 +X4 +X7 -X3 -X5 -X8 )/3 

The difference estimate for January 
is 

X* + Dec J,D 

(3) make a weighted average of the 
estimates of (1) and (2) above: 

*Jan = (1- K)X'Jan + K(X *Dec 
+ (9) 

B. Composite Estimator with Change from 
Three Previous Time Periods: 

The rotation pattern of Section 3 
permits estimates of change for identical 
panels to be made for two successive 
months, for times two months apart, and 
for times three months apart. An esti- 
mator which permits the use of this add- 
itional information is the following: 

X*Jan (1-K-L-M)V + K(X*Dec 
+ D) + 

L(X*Nov 
+ J N) M(x*Oct 

+ J (10) 

Here X'Jan is defined as before, and the 

0's are self -explanatory; X* used 

here is of course different from that in 
Equation (9). 

C. A Modification of the Simple Composite 
Estimator: 

Some improvement in the estimate of 
Equation (9) can be made if the linear 
combination of observations for January 
has more weight on panel. A, and less on 
paneb B, C, and D. Such a change will 
bring the coefficients on the observa- 
tions for January more in line with coef- 
ficients of the optimum estimate. Let 
the term (1- in Equation (9) be 

replaced by 

((1-K+A)X + (1-K-A/3)(X +X +x ))/4 (11) 
2 4 7 

which is equivalent to 

(1- K)x'Jan + - +x4 +x7))/4 

The expected value of the term in braces 
is zero. This form is called an "AK- 
Composite Estimator "; except for the 
addition of the terms in braces, the 
formula isthe same as that in Equation 
(9). 

D. Composite Estimator with Year -to -year 
Change: 

The Current Population Survey is 
actually based on eight panels rather 
than four, which rotate in such a way 
that there is a 50 percent overlap of 
households from year to year, as well as 
the percent overlap from month to 
month. When the year -to -year correlation 
is high (relative to the 12th power of 
the month -to -month correlation), appre- 

iable gains may be obtained by the use of 
year -to -year change in the composite 
estimate. An appropriate formula is 

XJ (1-K-Q)XJan + K(X*Dec + J D) 
* ) (12) Jan-12 + Jan,Jan-12 



where X" is an average based on the eight 

January panels, and Jan -12 refers to January 
of the preceding year. X "Jan may be a simple 

average, or may have unequal weights on the 
eight panels. 

E. More General Forms of Composite 
Estimators: 

More general composite estimators can 
be developed; however, an estimate which 
is too general will lose some of the 
advantages of the simpler estimates: it 

may require the use of too many of the 
elementary estimates, and may require the 
retention of too many earlier composite 
estimates. 

The four forms of the composite esti- 
mator given above are versions of 

Jan 
= 

J + 
* * * 
Dec + Nov + Oct 

Jan-12 (l3) 

where 
ZJan 

is composed of contributions 

from the estimates of level for January, 
and from several estimates of change. 

F. Comparisons with the Minimum Variance 
Unbiased Linear Estimator: 

How well a particular composite esti- 
mator will approximate the minimum vari- 
ance unbiased linear estimator may be 
measured by a comparison of the variances 
which are obtained by the two estimators. 
One may also compare the coefficients to 
be used on the elementary estimates, for 
different estimators. 

Table 4 shOws the coefficients for 
the most recent four months (Panels A -G) 
which are appropriate for several compos- 
ite estimates, for an estimate of the 
civilian labor force; it compares them 
with the coefficients for the minimum 
variance unbiased linear estimate based 
on data for ten months. The comparisons 
are made for the months of January, 
December, November, and October. In each 
case, the constants (K, L, M, Q) used for 
the composite estimate are the ones corre- 
sponding to the smallest value of the 
variance for the particular estimate 
considered. 

Table shows also the variances of 
estimates for January of the civilian 
labor force, for the various estimators.2 
The numbers are relative to the variance 
'of the simple average for January. It is 
seen that the AK- composite estimate 
approximates the minimum variance unbiased 
linear estimator quite closely: its vari- 
ance is only slightly larger than that of 
the best estimator, and the coefficients 
are close to those for the best estimate. 
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The estimate using year -to -year 
change (Estimate 5) is not strictly 

comparable to the other estimates in this 

table, as it uses information 

) 
which is not available to 

(8Jan,Jan -12 
the ten -month minimum variance unbiased 
linear estimate. It is included to point 
out that a high year -to -year correlation 
pattern can effect further improvements 
in the estimate. 

6. The AK- Composite Estimate Used with Several 
Characteristics: 

The AK- composite estimate is a good 
approximation to the optimum linear unbiased 
estimate for a characteristic such as the 
civilian labor force when A is .4 and K is .7. 

For an estimate such as the change in monthly 
level of the labor force, or for another 

characteristic such as unemployment (which 
has much lower correlations over time than 
the civilian labor force), these values of A 
and K will not be the best. Table 5 shows 
the variances expected for several corre- 
lation patterns, for estimates of level and 

of month -to -month change, for a number of 
values of A and K. 

It may be seen from an examination of 
Table that the values A = .2, and K = .7, 

while not the best for all characteristics, 
still provide appreciable gains over the 
simple average of elementary estimates, and 
even over the present composite estimate for 
the CPS (which uses the values A = 0 and 
K = .5) when the correlations are moderate or 
high. 

When the correlations are low very small 
gains may be expected, compared with the 
simple average; there may be losses if the 
values of A and K differ appreciably -from 
zero. 

7. Variations: 

The data in Tables 1 through 5 have been 
based on average values of variances and 
covariances, and on equal means for all of 
the observations at all time periods. In 
practice the variances and covariances will 
change over time, the means at different time 
periods may have a seasonal pattern, or a 
long term trend, and the expected values of 
the observations relating to the same time 
period may not be identical. 

A. Changing Correlation Pattern: 

Table 6 presents coefficients and 
variances for the minimum variance 
unbiased linear estimate for ten months 
when the correlations are not equal over 
time, but vary by as much as 20 percent 
from equality. The correlations used are 
shown at the top of the table. Even this 

2 The method of computation is illustrated in 
Appendix B. 
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rather large departure from equal corre- 
lations has almost no affect on the vari- 
ance of the estimate of the January 
level: by comparison with Table 3 it is 
increased from .187 to .189. The 

variance of the estimate of January - 
December change is unchanged at .122. 
The fact that the variances and covari- 
ances are not known more exactly is of 
little importance. 

Table 4.-- ESTIMATE OF CIVILIAN LABOR FORCE FOR JANUARY FROM CPS SURVEY 

A. Coefficients for Recent Months and Variances,for Several Linear Unbiased Estimates 

Estimate and month 
Panel 

A B C D E F G 

Variance of estimate 
for January 

(relative to the 
simple average) 

1. Minimum variance unbiased linear estimate -- 10 months started in April 

January 
December 
November 
October 

.187 .259 .271 .283 

-.089 -.037 -.032r 
-.077 -.026 

-.080 

2. Simple composite estimate: K .6 

January 
December 
November 
October 

.100 .300 

-.140 
.300 

-.020 
-.o84 

.300 
-.020 
-.012 
-.050 

3. Three -month composite estimate: K = .4, L = .1, M = .05 

January 
December 
November 
October 

.112 .246 .296 .346 

-.088 -.035 -.015 
-.074 -.039 

-.083 

4. AK- composite estimate: K = .7, A = 

January .175 .275 
December -.111 
November 
October 

.275 
-.041 

-.077 

.275 
-.041 
-.029 
-.054 

.158 
-.002 
-.006 

.180 

-.012 
-.007 

.138 

.023 

-.007 

.193 
-.029 
-.020 

.105 

.007 

.108 
-.007 

.090 

.023 

.135 
-.020 

.079 

.064 

.067 

.094 

.749 

.817 

.796 

,756 

B. Coefficients and Variance for Composite Estimate Using Year -to -year Changes 

Estimate 

B mon h 
Panel 

N IPIQIRI S 

5. Month -month and year -year change: K = .5, Q = .2 

Jan. 
Dec. 

Nov. 
Oct. 

.037 .121 

-.023 

-.033 

.121 
-.023 

-.011 
-.016 

Variance of estimate for January 
relative to the simple average: 

709 

.087 .171 .171 .171 
.061 -.040 .002 .002 .086 

.030 -.020 .001 .001 .043 
-.006 -.006 .015 -.010 .001 .001 .021 

Jan. -12 -.042 -.026 -.026 -.026 
Dec. -12 -.031 -.016 -.016 -.001 
Nov. -12 -.016 -.011 -.011 .006 
Oct. -12 -.015 -.007 -.007 .006 
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Table 5.-- COMPARISON OF VARIANCES OF AK- COMPOSITE ESTIMATES FOR SEVERAL CORRELATION PATTERNS, AND FOR 
SEVERAL VALUES A AND K 

Correlation pattern 

Variance, relative to simple average (A = 0, K = 0) of -- 

Estimate of monthly level Estimate of month -to -month c hanger 

A=0 A=.1 A=.2 A= .3 A=.4 A=0 A=.1 A=.2 Ar.3 A=.4 

1. High- - 

Pi=95, P2. =93, p3 =.90 

2. Moderate- - 

=.70, p3 =.65 

3. Low- - 

Pi=50, P2 =.40, p3 =.30 

.4 

5 
.6 

. 7 

.8 

.4 

.5 

.6 

.7 

.8 

. 4 

.5 

. 6 

.7 

.8 

.791 

.725 

.651 

.576 

.518 

.857 

.829 

.817 

.848 

.978 

.971 
1.005 
1.084 
1.262 
1.676 

.784 

.642 

. 564 

.500 

.845 

.812 

.792 

.806 

. 920 

.951 

.975 
1.038 
1.187 
1.560 

.785 

. 716 

.64o 

.56o 

.492 

.84o 

.803 

. 777 

.780 

.874 

. 938 

.953 
1.003 
1.130 
1.458 

. 792 

. 7644 

.563 

.491 

. 843 

. 802 

.770 

.764 

.837 

.933 

.939 

.978 
1.084 

1.370 

735 
.657 
.574 

499 

. 808 

.771 
. 756 
.812 

. 934 

.961 

1.048 
1.297 

. 524 

.442 

. 37o 

.309 

.262 

.728 

.690 

.661 

. 641 

. 635 

. 928 

. 931 

.942 

.960 
985 

.543 

.455 

. 379 

.314 

.265 

.735 

. 692 

.66o 

. 637 

.627 

922 
. 922 
.93o 

.945 

. 968 

. 58o 

. 
485 

. 3 

.334 

.282 

. 755 

. 706 

.669 
..642 
.629 

925 
.92o 
.924 

935 
. 955 

.636 

. 

.369 

.787 

.732 

.689 

.658 

.640 

935 
. 926 

. 925 

. 932 

. 949 

.596 

.499 

.419 

.357 

.77o 

.721 

.684 

.662 

.939 

.933 

.936 

.948 

Based on difference of two estimates of level. 

Table 6.-- ESTIMATE OF CIVILIAN LABOR FORCE FROM CPS SURVEY: MINIMUM VARIANCE UNBIASED LINEAR ESTIMATE 

Coefficients and Variances with a Changing Correlation Pattern 

A. Changing Correlation Pattern 

P2 

Correlation 
between: 

Correlation 
between: 

Correlation 
between: 

Jan. -Dec. .80 Jan. -Nov. .70 Jan. -Oct. .65 

Dec. -Nov. .76 Dec. -Oct. .68 Dec. -Sept. .61 

Nov. -Oct. .72 Nov. -Sept. .64 Nov. -Aug. .57 

Oct. -Sept. .68 Oct. -Aug. .60 Oct. -July .53 

Sept.-Aug. .64 Sept. -July .60 Sept.-June .57 

Aug. -July .68 Aug. -June .64 Au, May .61 

July -June .72 July -May .68 July -April .65 

June -May .76 June -April .70 

May -April .80 

B. Variances 

Estimate Variance 

Jan. level .189 

Dec. level .176 

Jan. -Dec. change .122 

Coefficients for Panels (Estimate of January Level) 

Panel 

Month A B C D E F G H I K L M 

Jan. .189 .254 .272 .285 

Dec. -.082 -.042 -.026 .150 

Nov. -.073 -.039 .014 .098 

Oct. -.077 -.017 .022 .072 

Sept. -.o46 -.014 .012 .048 

Aug. -.032 -.010 .011 .031 
July -.006 .006 .020 

June -.016 -.003 .005 .014 

May -.010 -.002 .002 .010 

April -.007 -.003 .001 .009 
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B. Unequal Means at a Particular Time 
Period: 

It may happen that the observations at 
a single time period do not all have the 
same expected value. For example, in the 
Current Population Survey, the first time 
a household is interviewed it appears to 
respond differently to the interview, with 
respect to some characteristics (for ex- 

ample,employment status), than at the 
second or later interviews. Following the 
diagram in Section 3, one might have for 
January: 

= (1+a)µ 

when 

EX2 = EX4 = EX7 = 

There may be the same kind of bias in the 
reports for December, November, etc. 

When there are unknown response biases 
in the expected values, both the minimum 
variance unbiased linear estimator and the 
various composite estimators may produce 
estimates which are biased. 

If the pattern of bias is constant over 
time the total bias will approach a limit 
for each of the estimators which have been 
discussed here. Table 7 shows the biases 
to be expected in several cases. 

In Table 7 a characteristic is con- 
sidered which is possessed by about 
10,000,000 persons in the population and 
which has a correlation pattern similar to 

that of the civilian labor force. The 
sampling error of this estimate from a 
simple average of elementary estimates is 

200,000 (i.e., about 2 percent). Two 
patterns of bias in the estimates from 
the four panels at a single month are 

considered: 

(1) The bias occurs only at the first 

time at which a household is inter- 
viewed. The bias is of the same 

order at each time period. The pat- 
tern of expected values at a single 
time period is 

(l +a)µ, µ, µ 
(2) The "newest" and 'oldest" panels have 

compensating biases. The pattern of 
expected values for each month is 

(1+a)µ, (1 -a)µ. 

Table 7 is computed for values of "a" 

equal to 100,000 and 200,000. The result- 

ing root mean square errors are compared 

with the standard errors of an unbiased 

estimate, for several estimators. 

Table 7 shows that when the bias in 
the estimate from the "new" panel is one- 
half (or even equal to) the size of the 

standard error of the estimate, the root 

mean square error is hardly any larger 

than the standard error of the correspond- 

ing estimate. The gains which are achiev- 

ed in using the minimum variance unbiased 
linear estimate, or the several composite 

estimates, persist, even with a bias of 

this size. 

Table 7.--EFFECT OF BIAS ON THE RELIABILITY OF SAMPLE ESTIMATES OF A CHARACTERISTIC HAVING A 

CORRELATION PATTERN OF p = .8, p2 .7, p = .65 

(Size of Estimate is 10,000,000) 

Estimator 

Standard 
error of 
estimate 

(103) 

a = 100 x 103 a = 200 x 103 

Bias in new panel only 

(1 +a, 1, i, 1) 

Bias in new panel only 

(l +a, 1, 1, 1) 

Compensating 
and oldest 
(l +a, 1 

bisa in new 
panels 

1, 1 -a) 

Bias 

(103) 

MBE 

(103) 

Bias 

(103) (103) 

Bias 

(103) (103) 

(i) (2) (3) (4) (5) (6) (7) (8) 

Simple average ... 200 -25 202 -50 205 0 200 

Minimum variance unbiased 
linear estimate -10 months. 173 -21 174 178 -201 265 

Simple composite: 

K .6 181 -25 182 -50 188 -200 270 

K = .5 182 - 8 182 -17 183 - 33 185 

AK- composite: 

K=.7, A. 174 -19 175 -39 178 -222 282 

K=.6, A-.3 175 6 176 -12 176 -149 230 

K=.5, A=.3 179 + 7 179 +13 180 - 93 



If biases should occur in two panels, and 
should be compensating, (see columns 7 and 8 
of Table 7) the simple average of the elemen- 
tary estimates would be unbiased. The esti- 
mators which make the most use of past data- - 
the minimum variance estimator and the AK- 
composite with a high value of K --show the 
largest increases due to such a bias. The 
columns for compensating biases are included 
in the table to illustrate perhaps the worst 
situation which could occur; the likelihood 
of compensating biases is very small. 

If the deviations in expected values are 
known, or can be measured quite accurately, 
one may consider the advisability of adjusting 
the sample estimates accordingly. However, 
the assumption that the bias will continue to 
be the same in the future as in the past may 
lead to serious errors. A better procedure 
is to try to eliminate the response bias, if 
it is significant. 

C. A Different Rotation Pattern: The Census 
Current Business Reports Survey: 

For small retail and service establishments, 
The Current Business Reports Survey of the 
Bureau of the Census is based on 12 panels,one 
of which is enumerated each month. At the 
time of enumeration, information on retail 
sales is obtained for the preceding month and 
for the next earlier month. After a year,the 
panel which was in the sample a year ago is 
enumerated again. 

The rotation pattern is 
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For this rotation pattern, the minimum 
variance unbiased linear estimate is very 
close in form to a composite estimate. If the 
rotation pattern is altered so that the sample 
for any month is independent of that for any 
other month (i.e., the sample for the months 
of one year are not repeated in subsequent 
years), then the minimum variance estimate can 
be expressed exactly in composite form. 

For an estimate of January level, we write 

= X1 - + 
2 

This estimator will have minimum variance 
when 

= cov(X1,X2) /(var(X2) + var(XDec)). 

Here is defined in a similar manner, in 

terms of X4, Xc and a constant which 

is defined in terms of cov(X3,X4), var(X4), 

and var(X *Oct). 

These relationships hold, whether the 
survey has started recently, or whether it has 
been in operation for a long time. When the 
covariances are all equal to p, and the 
variances of the individual elementary esti- 
mates (Xi) are all equal, say v2, the value of 
K approaches a limit, as time passes: 

K - 1 
-p2 

and the variance becomes 

Month 
Panel 

Jan. Dec. Nov. Oct. Sept. Aug. July June May April Mar. Feb. 

January. 

December 

November 

October. 

Septada 

August 

July 

May 

April 

March 

February 

January. 

December 

X 

X 

X 
25 
X 

26 

X 
3 

X 
4 

X 

X 

X 
e 

X 
7 

X 
e 

X 

X lo X 

X 
12 

etc. 

X 

X X 

X 
le 

X 

X X 
1e 

X 
20 

X 
21 
X 
22 

X 

X 
24 
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var(X *) = v2 

With the altered pattern, the best estimate 

of month -to -month change (say from December to 

January) will be obtained by making a revised 

estimate for December, using the data available 

from the January survey, and subtracting this 

from the best January estimated. The revised 

estimate for December can also be written in 

composite form 

Dec(rev) = (1-K/p)X2 + (K/p-K)X3 + 

K(X *Nov(rev) + - X4) 

where, as before, 

APPENDIX A 

K = - 

The variance of the revised estimate is 

a2 Kip 

it is smaller than the variance of the unre- 

vised estimate by a factor of K /p. 

The best estimate of the December- January 

difference is then X* was 

noted by Patterson [l8]. In fact, an estimate 

of this form, which uses all of the available 

data, has the minimum variance of any linear 

estimate of month -to -month change, even when 

the variances and correlations between panels 

are not constant over time. 

Computation of Minimum Variance Unbiased Linear Estimate 

To illustrate the computation of the minimum 
variance unbiased linear estimate, consider a set 
of three elementary estimates, which might be ob- 
tained at the beginning of a survey with a rotation 
pattern like that of the Current Business Reports 
Survey, as shown in the diagram in paragraph C of 
Section 7. The observation X1 is an elementary 
estimate for the month of January; observations 
X2 and X3 are elementary estimates for the preced- 
ing month, December. It is desired to make the 
minimum variance unbiased linear estimate of level 
for January, having the following information: 

1 = = = 

2. The covariance matrix is 

1 p 0 

K = 1 0 

0 0 1 

3. The mean value vector is 

= 

which can be written as 

= 

where 

= (1, 0, o) 

U2 (0, 1, 1) 

The matrix of coefficients of the minimum 
variance unbiased linear estimator for estimating 
the expected values of the three variables X1, X2, 
and X3 is (see Equation 7) 

C K UT) -1 

The covariance matrix of the optimum. solutions 
is (see Equation 8) 

P = K-1 UT)U. 

The solution is indicated in the following 

equations 

Define 

1 -p 0 

-p 1 

L = U 
1 

1-p2 I-p 2-p2 

1 -p 

= 2 
+p 1 

2-p2 p 
Define the matrix 

T P = U L-1 U = p 1 1 

p 1 1 
\ 

and the matrix of coefficients 

C = PK -1 = c2 0 1 1 

C3 0 1 1 
/ 

The minimum variance unbiased linear estimate 

for January level is obtained when the coefficients 

cl are used: 

A 
1 = Xi - p(X2 - X3)/2. 

The optimum estimates of December level employ 

the coefficients c2 and c3, respectively, and lead 

to identical solutions: 

X2 = X3 = (X2 + X3)/2 



The covariance matrix P, which gives the 

variances and covariances between 

A A A 
X1, X2, and X3 

leads to 

var61) = (2 - p2)/2 

var(X2) = var(X3) = 1/2 

The variance of the best estimate of change 

(X1 - X2) is 
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A A A A 
var(X1 - X2) = var(X1) + var(X2) 

2 cov(X1f X2) 

= (3 -2p - p2)/2. 

These results may be verified by conventional 
methods. For example, one may construct the 
variance of 

A 3 
X1 = E Xj, 

j =1 

and determine the values of the coefficients which 
minimize the variance, subject to conditions 1 
and 2. 

APPENDIX B 

Computation of Variances for Composite Estimates 

The general composite estimator, Equation (13), 

may be written as 

X* = Z + LX* +MX* + QX* (14) 
1 1 2 3 4 13 

where the subscript "1" designates the most recent 
month, "2" is the preceding month, etc. 

To illustrate the computation of the variance 
of a composite estimate, consider the simple com- 
posite estimator: 

X* = Z 
1 2 

= Z + KZ + K2Z + K3Z + (15) 
1 2 3 4 

1. Define, at each time period t, for 
t = 1, 2, 3, ... and i = 0, 1, 2, 

yo = var(Xt) 

Yi = cov(Xt, Xt+i) 

Ai cov(Zt' 
Xt+i) 

piz 
var(Z) = cov(Zt, 

Zt+i) 
and 

po 
= 1 

,z 

2. Take covariances between Equation (15) 
and X!, and X *: 

1 2 

YO = + KY1 
(16) 

Y1 = Al + KY() 

These two simultaneous equations can be 
solved for Yo and Y1 if < 1. The 

solution will give values for var(X *) and 

cov(X*,X*); higher covariances can be 

obtained successively from 

Yi = Ai + KY 
_1 

for i = 2, 3, 4, ... 

3. The (Ai) satisfy a set of covariance 

equations obtained by taking covariances 

between Z1 and 
(X1 

= + for 

= 1, 2, 3, ... 

Ai = Piz var(Z) + +1 (18) 

In particular, for the simple composite 
estimate (Equation 17) 

Ao = 
p 
o ,z 

var(Z) + KA1 

Al = var(Z) + KA2 (19) 

A2 = p2z var(Z) + 

etc. 

4. The form of Z is determined by the rota- 
tion pattern and the weights assigned to 
the panels. For the simple composite 
estimate, with the rotation pattern of the 
diagram in Section 3, we find 

Z1 = (1-K)(X1+X2+X4+X7)/4 

K(x2+x4+x7-x3-x5-(a)/3 
or 

Z1 = 11'4141 + (X2+X4+X7) - 

;(x3 +X5 +X8) 

Z2 is defined similarly, using the ele- 
mentary estimates with subscripts 
corresponding to months "2" and "33, 

etc. 

(20) 

The variances and covariances 

cov(ZZ, á +i) = piz 
var(Z) 

may be expressed in terms of the variances 
and covariances of the original (elementary) 

(17) estimates X that is, in terms of 
var(X) and 
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For the rotation pattern of the 
diagram, correlations more than three 
months apart are zero; it turns out that 
only var(X), 

p2x 
and are are non- 

zero. Starting with A4 = 0, in Equation 
(].B), As, A2, Al, and A may be determined 
recursively, for particular values of K, 
and of 

var(X) and p2x, pax 

5. Having found [A), Equations (16) may be 
solved for Y And Y1; in, general, [Y) 
may be foundoby applying Equation (177 
successively. 

6. The form of the lends itself readily 
to the evaluation of a number of estima- 
tors, in addition to the estimate of level 
for a single month. For example: 

Variance of monthly level = var(X1) 

= Y 
o 

Variance of month-to-month 
, 

change in level = varX1 -X2) 

= 2(Y0-Y1) 
Variance of year -to -year 

change in level = var(X1 -X13) 

= 2(Yo -Y12) 
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